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Garside monoids and groups

The braid group B(e, e, n)
Study of the Garside structure

Complex reflection groups

An element s ∈ GLn(C) is called a reflection if

Ker(s − 1) is a hyperplane,

s2 = 1.

Relaxing the second condition to s of finite order defines the
notion of pseudo-reflection.

Let W be a finite subgroup of GLn(C).
W is a reflection group if W =< R > where R is the set of
reflections of W .

Fact: Every reflection group is a direct product of irreducible ones.
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Irreducible reflection groups

The Shephard and Todd classification:

The first family:
For e, n ≥ 1, G (e, e, n) is the group of n× n matrices consisting of:

monomial matrices (each row and column has a unique
nonzero entry),

with all nonzero entries lying in µe , the e-th roots of unity, and

for which the product of the nonzero entries is 1.
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Irreducible reflection groups

The second family:
For e, n ≥ 1, G (2e, e, n) is the group of n × n matrices consisting
of:

monomial matrices,

with all nonzero entries lying in µ2e , and

for which the product of the nonzero entries is 1 or −1.

Plus: 15 exceptions!
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Complex braid groups

Let W < GLn(C) a complex reflection group, and R the set of
reflections of W .

There is a corresponding hyperplane arrangement and hyperplane
complement:

A = {Ker(s − 1) | s ∈ R}, X = Cn \ ∪A

P = π1(X ) pure (complex) braid group,

B = π1(X/W ) braid group, with

1 −→ P −→ B −→W −→ 1
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Artin-Tits groups

A finite Coxeter group W is defined by the following presentation:

W =< S | s2 = 1, sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

for s 6= t ∈ S >

The Artin-Tits group B(W ) attached to W is the group of
fractions of the monoid B+(W ):

B+(W ) =< S̃ | s̃ t̃ s̃ · · ·︸ ︷︷ ︸
mst

= t̃ s̃ t̃ · · ·︸ ︷︷ ︸
mst

for s̃ 6= t̃ ∈ S̃ >+

B(W ) =< S̃ | s̃ t̃ s̃ · · ·︸ ︷︷ ︸
mst

= t̃ s̃ t̃ · · ·︸ ︷︷ ︸
mst

for s̃ 6= t̃ ∈ S̃ >
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Link with the first definitions

Let W < GLn(R) < GLn(C).

W a real reflection group

(Coxeter) l

W is a Coxeter group:  B the Artin-Tits group:
Generators + quadratic Generators + braid relations

and braid relations
l (Brieskorn)

B = π1(X/W )
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General goal

General goal: Extend what is known for Artin-Tits groups to
complex braid groups.

For example:

Artin-Tits groups are linear (Krammer, Bigelow, Digne,
Cohen-Wales, Paris)

Artin-Tits groups admit Garside structures (Garside, Deligne)

Why considering B(e, e, n), the complex braid group attached to
G (e, e, n) ?
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Garside structure

Let us recall the notion of a Garside structure.

Let M be a monoid and f , g ∈ M.
We say that f left-divides g , written f � g , if fg ′ = g holds for
some g ′ ∈ M.
Similarly, we can define the notion of right division.
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Garside structure

Definition

We say that M is a Garside monoid if

M is cancellative,

there exists λ : M −→ N s.t. λ(fg) ≥ λ(f ) + λ(g) and
g 6= 1 =⇒ λ(g) 6= 0,

any two elements of M have a gcd and an lcm,

there exists an element ∆ ∈ M such that its left and right
divisors coincide and generate M, and the set of all divisors of
∆ is finite.

The element ∆ is called a Garside element of M and the divisors of
∆ are called the simples of the Garside structure.
A Garside group is the group of fractions of a Garside monoid.
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Interval structure

Let G be a finite group generated by a set S .

We define a partial order relation on G by:

x � y ⇐⇒ `(x) + `(x−1y) = `(y).

For g ∈ G , we define a monoid M([1, g ]) by the presentation with

Generators: A set P in bijection with the interval

[1, g ] := {x ∈ G | 1 � x � g}

Relations: x y = z if xy = z and x � z � g , that is
`(x) + `(y) = `(z).
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Interval structure

Similarly, we can introduce the partial order relation
x �r y ⇐⇒ `(yx−1) + `(x) = `(y), and the interval [1, g ]r then
define the monoid M([1, g ]r ).

Theorem (Michel)

If [1, g ] = [1, g ]r and both posets ([1, g ],�) and ([1, g ]r ,�r ) are
lattices, then M([1, g ]) is a Garside monoid with Garside element g
and with simples P.
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Interval structure

Seminal example:

Let W be a finite coxeter group

W =< S | s2 = 1, sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

for s 6= t ∈ S >

Take G = W and g = w0 the longest element.
We have [1,w0] = W .
The interval monoid M([1,w0]) is the Artin-Tits monoid B+(W ).
Hence B+(W ) is generated by a copy W of W with x y = z if
xy = z and `(x) + `(y) = `(z); x , y , z ∈W .

Theorem

B+(W ) is a Garside monoid with Garside element w0 and with
simples W .
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Definition of G (e, e, n)

Recall that

for e, n ≥ 1, G (e, e, n) is the group of n× n matrices consisting of:

monomial matrices,

with all nonzero entries lying in µe , the e-th roots of unity, and

for which the product of the nonzero entries is 1.
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Presentation for G (e, e, n)

Define a group by a presentation with generators and relations that
can be described by the following diagram:

2t0

2t1

2

s3

2

s4

2

sn−1

2

sn

e
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Presentation for G (e, e, n)

It is shown that this group is isomorphic to the complex reflection
group G (e, e, n) (Broué-Malle-Rouquier),

with ti 7−→ ti :=

 0 ζ−ie 0
ζ ie 0 0
0 0 In−2

 with i = 0, 1 and

sj 7−→ sj :=


Ij−2 0 0 0

0 0 1 0
0 1 0 0
0 0 0 In−j

 with 3 ≤ j ≤ n.

Coxeter cases n = 2 (dihedral groups), e = 1 (symmetric groups),
e = 2 (type Dn).
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Presentation of B-M-R for B(e, e, n)

Removing the quadratic relations from the presentation of
Broué-Malle-Rouquier gives a presentation of the complex braid
group B(e, e, n) attached to G (e, e, n) with diagram:

t̃0

t̃1

s̃3 s̃4 s̃n−1 s̃n
e
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Presentation of B-M-R for B(e, e, n)

t̃0

t̃1

s̃3 s̃4 s̃n−1 s̃n
e

This is called the presentation of Broué-Malle-Rouquier of
B(e, e, n).

If e ≥ 3 and n ≥ 3, the monoid defined by this presentation fails to
embed in B(e, e, n) (Corran)
Thus, this presentation does not give rise to a Garside structure for
B(e, e, n)!
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Study of the Garside structure

Presentation of C-P for B(e, e, n)

Let t̃i := t̃i−1t̃i−2t̃
−1
i−1 for 2 ≤ i ≤ e − 1. Consider the following

diagram presentation:

t̃0

t̃1

t̃2

t̃i

t̃e−1

s̃3

s̃4

s̃n−1

s̃n· · ·

It is called the presentation of Corran-Picantin of B(e, e, n).
This presentation gives rise to a Garside structure for B(e, e, n)!
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Presentation for G (e, e, n)

Adding x2 = 1 for all generators x of the presentation of
Corran-Picantin gives a presentation of a group isomorphic to
G (e, e, n)

2

t0 2

t1

2 t22

ti

2

te−1

2

s3
2

s4 2

sn−1

2 sn
· · ·
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Presentation for G (e, e, n)

Adding x2 = 1 for all generators x of the presentation of
Corran-Picantin gives a presentation of a group isomorphic to
G (e, e, n),

with ti 7−→ ti :=

 0 ζ−ie 0
ζ ie 0 0
0 0 In−2

 with 0 ≤ i ≤ e − 1 and

sj 7−→ sj :=


Ij−2 0 0 0

0 0 1 0
0 1 0 0
0 0 0 In−j

 with 3 ≤ j ≤ n.
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Simples and Garside element

Consider the presentation of Corran and Picantin of B(e, e, n)
which gives rise to a Garside structure.

The Garside element is ∆ = t̃1t̃0︸︷︷︸
∆2

s̃3t̃1t̃0s̃3︸ ︷︷ ︸
∆3

· · · s̃n · · · s̃3t̃1t̃0s̃3 · · · s̃n︸ ︷︷ ︸
∆n

,

and

the simples are precisely the elements of the form δ2δ3 · · · δn where
δi is a divisor of ∆i for 2 ≤ i ≤ n.
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Study of the Garside structure

Second homology group

Theorem (Callegaro,Marin)

Let B := B(e, e, n) with e ≥ 2 and n ≥ 2.

If n = 2, then H2(B,Z) = 0 if e is odd and H2(B,Z) = Z if e
is even (Salvetti).

If n = 3, then H2(B,Z) ' Z/eZ.

If n = 4 and e is odd, then H2(B,Z) ' Z/eZ× Z/2Z.

If n = 4 and e is even, then H2(B,Z) ' Z/eZ× (Z/2Z)2.

If n ≥ 5, then H2(B,Z) ' Z/eZ× Z/2Z.

23 / 26 Georges Neaime Garside structures for B(e, e, n)



Introduction
Garside monoids and groups

The braid group B(e, e, n)
Study of the Garside structure

Parabolic submonoids

Let δ be a balanced element of Div(∆). Denote by Bδ the
subgroup of B(e, e, n) generated by the elements of
{t̃0, t̃1, · · · , t̃e−1, s̃3, · · · , s̃n} that are in Div(δ).

We say that Bδ is a standard parabolic subgroup of B(e, e, n) if
Div(δ) = Div(∆) ∩ Bδ (definition of Godelle for standard parabolic
subgroups in a Garside structure).

The balanced elements of Div(∆) are the lcm of the subsets of
{t̃0, t̃1, · · · , t̃e−1, s̃3, · · · , s̃n}. Denote δ one of these balanced
elements. We have Bδ a standard parabolic subgroup of B(e, e, n)
in the sense of Godelle.
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Parabolic submonoids

For example, consider the presentation of Corran-Picantin for
B(e, e, 3)

t̃0

t̃1
t̃2

t̃i

t̃e−1

s̃3

We have 2 types of standard parabolic subgroups in the sense of
Godelle:

t̃0

t̃1
t̃2

t̃i

t̃e−1

t̃i s̃3
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Thank you!
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